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The magnetic field generation through inverse Faraday effect and its effects on the propagation of a circu-
larly polarized light wave are studied in a self-consistent way for relativistic intensities. The following results
are presented.~i! The magnetic field is produced by two sources, the circular motion of single electrons which
produces plasma magnetization, and the inhomogeneity of both the electron density and light intensity which
produces nonzero currents in the azimuthal direction. The magnetic field is calculated for various profiles of
electron density and light intensity.~ii ! For the case of a plane wave in a homogeneous plasma, the cutoff
frequency is calculated as a function of light intensity, which is different from that without consideration of
magnetic field generation. An ultra-intense magnetic field as large as hundreds of MG is obtainable in an
overdense plasma where the wave can propagate owing to the induced transparency.~iii ! The evolution
equations for a laser beam of finite width are derived. Due to magnetic field generation, the critical power for
self-focusing of the laser beam is reduced by a factor of~11v p

2/v2!21; the magnetic field tends to reduce the
effect of the electron cavitation resulting from the transverse ponderomotive force.@S1063-651X~96!04908-2#

PACS number~s!: 52.35.Mw, 52.40.Db, 52.40.Nk

I. INTRODUCTION

Relativistic interaction of electromagnetic~em! waves
with plasma was first investigated about 40 years ago by
Akhiezer and Polovin@1#, who showed the complicated non-
linear coupling even between homogeneous plasma and
plane em waves. Subsequent studies on the interactions be-
tween optical beams of finite width and inhomogeneous plas-
mas, which are concerned with the concept of laser-ignited
inertial confinement fusion, have discovered a variety of
more complicated structures of laser-plasma coupling. One
of them is the self-focusing~or self-trapping! of intense laser
beams in plasmas@2–4#. In the powerful laser field, the elec-
tron mass increases due to the relativistic motion. This effect
modifies the plasma refractive index in such a way that the
refractive index is larger in high intensity regions than that in
low intensity regions, and hence results in the self-focusing
of the beams. Then, Sunet al. noted the fact that the pon-
deromotive force of the laser beam tends to expel plasma@5#,
and the expulsive force results in a lowered electron density
or even electron cavitation channel in the high intensity re-
gion. This channel is beneficial for the focusing of the laser
beam. In general, both the relativistic effect and the displace-
ment of electrons due to the ponderomotive force should be
taken into account. An analytical treatment of similar model
equations was given by Kurki-Suonio, Morrison, and Tajima
for the case when the electron cavitation does not occur@6#.
Borisovet al. further extended the same problem by includ-
ing inhomogeneity of plasma density@7#. These investiga-
tions are expected to be valid for beam length~or pulse du-
ration! much longer than the width and at times before
significant motion of ions. Recently, two-dimensional self-
focusing of short intense laser pulse was studied@8–10#. It
has been supposed that this kind of self-focusing is useful for

the plasma based particle accelerators@11# and the recently
proposed concept of the fast ignitor@12#.

However, the studies on self-focusing of laser beams are
still not complete, even for the case of a circularly polarized
light wave. As early as the 1970s, the excitation of a mag-
netic field by a circularly polarized em wave in plasma,
known as the inverse Faraday effect@13#, was found experi-
mentally. It was shown that in the low intensity limit, the
magnetic field produced is proportional to the intensity of the
incident wave. Therefore the magnetic field produced can be
as large as tens of MG or even larger when the incident light
wave is at relativistic intensities. It can largely modify the
propagation of the light wave. To our knowledge, this prob-
lem has not received sufficient attention up to now.

In this work, we will study the following problems. First,
we calculate the magnetic field generation in a self-
consistent way, clarifying that the magnetic field has two
sources.~1! One source is related to the circular motion of
single electrons in the wave which is equivalent to a mag-
netic dipole. The superposition of all the magnetic dipoles
constitutes the magnetization of the plasma@14#. ~2! The
other source is related to the inhomogeneity of both the elec-
tron density and the intensity of the laser beam. If there is no
such inhomogeneity, the latter will contribute nothing. In
earlier studies, the magnetic field was not calculated self-
consistently, i.e., the magnetic field was not taken into ac-
count in the equation of motion@15–18#. Meanwhile, either
the first or the second source was ignored.

Secondly, the dispersion relation of a circularly polarized
relativistic wave is reconsidered, now taking magnetic field
generation into account. The cutoff frequency is studied as a
function of the intensity of the wave, which is shown more
clearly than that given in@14#.

Thirdly, self-focusing of laser beams is studied, including
the self-generated magnetic field. This improves earlier re-
sults in several ways, for example, the critical power for
self-focusing is modified, and the electron cavitation channel
is reduced. In our study we assume that the laser beam is
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short enough to neglect ion motion, while long enough as
compared to the beam width to neglect the longitudinal
variation. The latter allows us to treat the problem of beam
self-focusing in one dimension, a method adopted in some
earlier studies@2–7#.

In Sec. II the calculation of the magnetic field produced
through inverse Faraday effect is given. Section III presents
the dispersion relation of a plane circularly polarized wave.
Section IV gives the evolution equation of a laser beam with
self-generated magnetic fields taken into account. The sta-
tionary eigenmode solutions of the evolution equation are
found numerically in Sec. V. A summary of the results is
given in Sec. VI.

II. MAGNETIC FIELD GENERATION

For a cold relativistic electron fluid,

dP

dt
52eSEL2“•F1

1

c
v3~BL1Bs! D , ~1!

whereEL andBL are the electric and magnetic field of the
laser beam, respectively, andF andBs are the slowly vary-
ing electric potential and the longitudinal magnetic field
along the direction of laser propagation either produced
through inverse Faraday effect or externally applied. Taking
the electric fieldEL in the form

EL5 1
2E0~ êx1 ilêy!exp~ ikz2 ivt1 ic0!1c.c., ~2!

whereE0(x,y,z,t) is the real amplitude, slowly varying in
time and space,l is either equal to 1 or21, corresponding to
right- and left-circular polarization, respectively,êx and êy
are the unit vectors inx andy direction,c0 is a phase slowly
varying in time and space, used to enforce“•EL50 for pure
transverse waves, and c.c. denotes the complex conjugate
terms. From this, we find the oscillation velocity at funda-
mental frequency is

v'52
ih

2

eE0
mvg

~ êx1 ilêy!exp~ ic!1c.c., ~3!

whereh5~12lvc/vg!21, g51/A12uvu2/c2 is the relativis-
tic factor, vc5eBs/mc is the cyclotron frequency, and
c5kz2vt1c0. From this equation, we find the relativistic
factor in the form

g5@11~heE0 /mvc!2#1/2, ~4!

which differs from that without a constant magnetic field by
a factor ofh. This factor has been ignored in some earlier
studies, thereby losing the self-consistency@15–18#. Here the
longitudinal velocity of electrons is ignored on the assump-
tion that the intensity of the laser beam changes slowly in the
longitudinal direction. From the continuity equation, we find
the density perturbation of electrons at fundamental fre-
quency

n52
i

v
“•~n0v'!

52
eE0
2mvg

~ êx1 ilêy!exp~ ic!•“S hn0
g D1c.c., ~5!

wheren0 is the slowly varying electron density. In deriving
this equation, it is important to use the condition“•EL50;
Otherwise, incorrect results are obtained@17,18#. The slowly
varying current is calculated by time averaging

Js52^env&5
lhe3E0

2

2gm2v3 S êy ]

]x
2êx

]

]yD S hn0
g D , ~6!

where^ & denotes time average overv21. We notice that this
current depends on the inhomogeneity of both the plasma
density and light intensity. If the beam is cylindrically sym-
metric, it reduces to

Js5
lhe3E0

2

2gm2v3

]

]r S hn0
g D êu . ~7!

On the other hand, the motion of a single electron in the
circularly polarized laser field produces a magnetic dipole
momentm52e/2c^r03v'& with r0 the orbit radius, which
produces magnetization of the plasma when it is summed for
all electrons,

M52
lh2e3n0E0

2

2cg2m2v3 êz . ~8!

The total magnetic field is calculated from@19#

“3Bs5
4p

c
Js14p“3M . ~9!

In cylindrical geometry, with no externally applied constant
magnetic field andBs50 for r→`, we find from Eq.~9!, by
using Stokes’s theorem,

Bs52
2plec

v Fh2n0uau2

g2 2E
r

1` huau2

g

d

dr S hn0
g D drG êz ,

~10!

or

vc

v
52

l

2

vp
2

v2 Fh2uau2

g2 2
1

n0
E
r

1` huau2

g

d

dr S hn0
g D drG ,

~11!

wherea5eE0exp(ic0)/mvc is the normalized complex am-
plitude andv p

254pn0e
2/m. Obviously, for a linearly polar-

ized laser beam withl50, there are no currentJs and mag-
netizationM , and therefore no longitudinal magnetic field
generation.

In the non-self-consistent way,h andg in the above equa-
tion are simply substituted with 1 andg05A11uau2, where
g0 is the normal relativistic factor without the magnetic field.
In this case, the magnetic field can be calculated directly
from these equations. Here we can give some examples for
the purpose of comparison with the self-consistent result.
When the electron densityn0 is homogeneous, and the am-
plitude of the laser field approaches zero asr→1`,

Bs52
l

2 Smvc

e D S vp
2

v2D S 3uau2

2g0
2 2

1

2
lng0

2D . ~12!
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If both the laser field and the density of electrons are inho-
mogeneous, for example, when both have Gaussian shape
uau5a0exp(2r 2/2L a

2), a0
2!1, and n0(r )5N0exp(2r 2/L n

2)
[N0f 1(r ), then

Bs52
la0

2

2 Smvc

e D S vp8
2

v2 D S 11
La
2

La
21Ln

2D
3expF2S r 2La2 1

r 2

Ln
2D G , ~13!

wherevp8
254pN0e

2/m; otherwise for the same Gaussian
uau, but density cavitationn0(r )5N0@12exp(2r 2/L n

2)#
[N0f 2(r ), we have

Bs52
la0

2

2 Smvc

e D S vp8
2

v2 D F12S 11
La
2

La
21Ln

2D
3exp~2r 2/Ln

2!Gexp~2r 2/La
2!. ~14!

Self-consistently, the magnetic field produced can be calcu-
lated numerically. To do this, it is easier to solve a differen-
tial equation than to solve an integration equation. Assuming
n0(r )5N0f (r ), and taking the derivative of Eq.~11!, or di-
rectly from Eq.~9!, we find

d~vc /v!

dr
52

l

2

vp8
2

v2 S 11
3

2

b0h
3uau2f
g5

vp8
2

v2 D 21

3F2 h2uau2

g2

d f

dr
1

h2f

g2

3S 12
3

2

b0h
3uau2

g2 D duau2

dr G , ~15!

whereb05@11l(vc/v)uau2~h/g!3#21. This equation is easily
solved for given functionsf (r ) and ua(r )u2. Figures 1 and
2~a! display a comparison between the non-self-consistent
analytical expressions@Eqs. ~12!–~14!# and the self-
consistent result obtained from Eq.~15!. It shows that only
for the casev p

2/v2!1 or uau2!1 when the generated mag-
netic field is small, the non-self-consistent results approach
the self-consistent results. The plotted results are forl51. If
one takesl521, the magnetic fields just change sign.

Meanwhile, we note according to Eq.~11! that
vc/v;(vp/v)

2(uau2/g2), therefore either foruau!1 or
uau@1, one hasvc/gv!1. We then obtain forh andg in the
order ofO(vc/v)

h'11l
vc

g0v
,

g5g01l
vc

v

uau2

g0
2 , ~16!

h

g
5

1

g0
S 11l

vc

v
g0

23D ,
and

d~vc /v!

dr
52

l

2

vp8
2

v2 S 11
3

2

f uau2

g0
5

vp8
2

v2 D 21

3F S 112l
vc

v
g0

23D 2uau2

g0
2

d f

dr

1S 12
uau2

2
1l

vc

v

4211uau2

2g0
3 D f

g0
4

duau2

dr G .
~17!

Figures 1 and 2~b! show a comparison between Eqs.~15! and
~17!. It shows that the approximation to orderO(vc/v) is
generally reasonable.

It should be pointed out that Eqs.~15! and ~17! are valid
for inhomogeneous distributions of the light intensity and
electron density. When both the light intensity and plasma
density are homogeneous, the total volume current density
vanishes, but there is still surface contribution. The magnetic
field is simply

Bs52
l

2 Smvc

e D S vp
2

v2D h2uau2

g2 , ~18!

and the corresponding differential equation is

d~vc /v!

duau2
52

l

2

vp
2

v2

h2

g2 S 11
b0h

3uau2

g5

vp
2

v2D 21

3S 12
b0h

3uau2

g2 D . ~19!

Figure 3 displaysvc/v as a function ofuau2 for some value
of v p

2/v2. The non-self-consistent result~takingh51, g5g0!
is also given for comparison. The latter overestimates the
magnetic field. Compared to Fig. 1, one can see that the

FIG. 1. Magnetic field produced in homogeneous plasma as a
function of the light intensity calculated in self-consistent~SC! and
non-self-consistent@NSC, Eq.~12!# ways, or self-consistently but
with approximation to orderO(vc/v) for v p

2/v250.8 and right-
circular polarization~l51!. The magnetic field is normalized to
B05mvc/e.
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volume current density induced by the intensity inhomoge-
neity tends to cancel the magnetic field generation in homo-
geneous plasma.

III. THE CUTOFF FREQUENCY OF A CIRCULARLY
POLARIZED RELATIVISTIC LIGHT WAVE

The general wave equation is

¹2EL2
1

c2
]2EL

]t2
5
4p

c2
]J

]t
, ~20!

with

J52ensv'5
ihe2ns
mvg

EL , ~21!

and the density of electronsns is determined by Poisson’s
equation

¹2F54pe~ns2n0!. ~22!

Heren0 is the unperturbed electron density or the ion density
with effective charge number equal to one. For plane waves,
ns5n0 , we then have the dispersion relation of circularly
polarized relativistic light,

v25k2c21
vp
2

g S 12l
vc

vg D 21

. ~23!

This dispersion relation was also given by Akhiezer and
Polovin @1#, where they considered the propagation of a cir-
cularly polarized relativistic wave with an externally applied
magnetic field along the propagation direction. Here,vc/v in
the dispersion relation is calculated from the self-generated
magnetic field@Eq. ~18!# andg is given by Eq.~4!.

The cutoff frequency above which the laser beam can
propagate in the plasma is

vCF
2 5

vp
2

g S 12l
vc

gvCF
D 21

. ~24!

If the magnetic field is produced uniquely by inverse Faraday
effect, Eq.~18! gives

vc

vCF
52

l

2

vp
2

vCF
2

uau2

g2 S 12l
vc

gvCF
D 22

, ~25!

therefore

vCF
2

vp
2 5

1

g S 11
uau2

2g

vCF
2

vp
2 D 21

, ~26!

FIG. 2. ~a! Magnetic field distribution calculated in a self-
consistent~SC! or non-self-consistent~NSC! way for two different
profiles of plasma density given in the text@curve~I! for f 1(r ) and
curve ~II ! for f 2(r )# and for a Gaussian beam foruau50.1,
vp8

2/v250.1,Ln5La55.0r 0, andl51. ~b! Magnetic field distribu-
tion calculated exactly or with approximation to orderO(vc/v) for
the same density profiles and Gaussian beam foruau52.0,
vp8

2/v250.8, Ln5La55.0r 0, and l51. Magnetic field in units
B05mvc/e; radius in arbitrary unitsr 0.

FIG. 3. Magnetic field produced in homogeneous plasma by a
right-circularly polarized plane wave~l51! for v p

2/v250.8, nor-
malized toB05mvc/e.
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vc

vCF
52

l

2

vCF
2

vp
2 uau2, ~27!

with l5~11hCF
2 uau2!1/2 andhCF5~12lvc/gvCF!

21. Figure 4
showsvCF

2 /v p
2 and uvc/vCFu as functions ofuau2. The cutoff

frequency for intense circularly polarized light is slightly
smaller thanvp

2/A11uau2, the well-known result without
considering the magnetic field generation. With the approxi-
mation ~16!, we have

vCF
2

vp
2 5

g0
3

uau2 F211S 11
2uau2

g0
4 D 1/2G . ~28!

When uau@1, we find

vCF
2 /vp

251/uau, ~29!

vc /vCF52~l/2!uau. ~30!

We note that the magnetic field generated increases linearly
with the amplitude of the light wave. It shows that one can
obtain an ultra-intense magnetic field in an overdense plasma
where the light wave can propagate through induced trans-
parency. As an example, if the incident wave has a wave-
lengthl051 mm in vacuum anduau53.0, which corresponds
to an intensity of about 1.2331019 W/cm2, the plasma has a
cutoff density nc5uaun c

(0)5uauv 0
2m/(4pe2)53.3531021/

cm3, and the magnetic field produced is around 160 MG.
This value is comparable with these produced through other
mechanisms@20,21#.

IV. THE EVOLUTION EQUATIONS OF CIRCULARLY
POLARIZED LASER BEAMS

For a laser beam with finite transverse size,“F is not
zero. Assuming the amplitude envelope of the laser beam
changes slowly in longitudinal space as compared to that in
transverse direction, taking the time average overv21 in Eq.

~1!, after some tedious algebra calculation, we obtain

“'F5 K 1c v'3BL1
m

e
~v'•“ !gv'L

5
he

2mv2g F“'E0
21

lvc

v
“'S h

g
E0
2D G , ~31!

where we have ignored the longitudinal component and use
the relation“•EL50. We emphasize that this expression is
valid for a circularly polarized light wave with a slowly
varying magnetic field, either produced by the light wave or
applied externally, in the propagation direction. Now we put
the above equations in dimensionless form by introducing
aL5eEL/mvc, a5eE0exp(ic0)/mvc, f5eF/mc2, kp
5vp/c, andNs5ns/n0 with v p

254pn0e
2/m. The resulting

wave equation is

¹2aL2
1

c2
]2aL
]t2

5
hkp

2

g
NsaL , ~32!

Ns5max~0,11kp
22¹'

2f!, ~33!

“'f5
h

2g F“'uau21
lvc

v
“'S h

g
uau2D G , ~34!

with g andh given in Sec. II. Here we assume the plasma
density is homogeneous. These three equations describe the
propagation of optical beams in plasma with a magnetic field
in the propagation direction. SubstitutingaL5a/2~êx
1 ilêy!exp(ikz2 ivt) into Eq. ~32!, we have

]a

]z
1

1

vg

]a

]t
2

i

2k F¹'
21kp

2S s2
hNs

g D Ga50, ~35!

where the dispersion relationv25k2c21sv p
2 for laser

beams with finite transverse size has been used,vg5dv/dk
is the group velocity, ands<1 is a constant eigenvalue
meaningful only for the stationary solution of Eq.~35! and
depending on the light power of the eigenmode@5,7#. Physi-
cally, s is related to the effect of relativistic electron-mass
increase and charge displacement owing to the transverse
ponderomotive force, which tends to reduce the plasma fre-
quency in the dispersion relation. The higher the power of
the trapped eigenmode, the smaller thes value. Now making
substitution ofz85z2vgt and normalizingj5k p

2z8/k and
r'5kpr' , we obtain the evolution equation for a circularly
polarized laser beam in plasma,

S ¹'
212i

]

]j
1s Da5

hNs

g
a, ~36!

where ¹'
25d/dr(rd/dr)/r for cylindrical geometry. To

simplify the problem, we calculate all quantities to order
O(vc/v) since this is a very good approximation as shown
in Sec. II, whereh andg are given by Eq.~16!, and“'f is
reduced to

FIG. 4. The cutoff frequency of an intense circularly polarized
light wave in homogeneous plasma and the magnetic field pro-
duced. Curve~a! takes into account the self-generated magnetic
field and curve~b! does not account for it.
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“'f5S 1

2g0
1l

vc

v

41uau2

4g0
4 D“uau2

5“'g01
l

2

vc

v
“'S 12 lng0

22
3

2
g0

22D ,
and

¹'
2f5b5g0

23UdadrU
2

1
b4

2g0
a* S d2adr2

1
1

r

da

dr D
1

l

2

d

dr S vc

v D b3

g0
a*

da

dr
1c.c., ~37!

where

b35
41uau2

2g0
3 ,

b4511l
vc

v

41uau2

2g0
3 ,

b5511l
vc

v

429uau22uau4

2g0
3 .

If the magnetic field is produced exclusively through the
inverse Faraday effect, then the cyclotron frequency is cal-
culated simply by Eq.~17! with d/dr substituted withd/dr.
One finds that the evolution equations for right-and left-
circularly polarized laser beams are the same, although the
magnetic fields have opposite signs for the two cases.

V. EFFECT OF SELF-GENERATED MAGNETIC FIELD
ON THE PROPAGATION OF LASER BEAMS

A. Critical power of self-trapping

The stationary equation is

1

r

d

dr S r
da

dr D1sa5
hNs

g
a, ~38!

which is similar to the one given by Sunet al.except for the
different forms ofNs , g, andh. Here, we takea to be real.
The critical power is calculated as follows. Near the critical
power, uau!1, and the beam radiusr0@1, therefore
Ns;11a2/r 0

2'1, s'1, and vc/v'2la2v p
2/(2v2)!1.

To the order of O(uau2), we have h'12a2v p
2/~2v2!,

g'11a2/2, and Eq.~38! reduces to

1

r

d

dr S r
da

dr D 1Fs211
1

2 S 11
vp
2

v2Da2Ga50. ~39!

Assuming k2512s, u51/2~11v p
2/v2!, and

a5(k2/u)1/2H(kr), one has

1

r

d

dr S r
dH

dr D2H1H350, ~40!

with the boundary conditionsdH/dr ur5050 andH ur→1`50.
The solution of this equation is well known@22,23#. From
this, the critical power is calculated as

Pcr5
m2c5

2e2
v2

vp
2 E

0

`

uau2r dr

5
m2c5

e2
1

2u

v2

vp
2 E

0

`

H2~r!r dr

51.62310103S v2

vp
2D S 11

vp
2

v2D 21

W, ~41!

where, in the last integration, we have made use of the result
given in Ref.@7#. Compared with previous studies, we find
that the critical power is reduced by a factor of~11v p

2/v2!21

due to the magnetic field generation. This result is also con-
firmed in the following numerical calculations. Physically, it
can be understood from the basic dispersion relation Eq.
~23!: it shows that self-generated magnetic field tends to in-
crease the refractive index in high intensity regions in addi-
tion to that caused by the relativistic effect. The critical
power is, of course, just a necessary condition for self-
focusing of a laser beam. The sufficient condition is related
with some globally conserved quantities of the beam@23,24#.
Taking into account the magnetic field generation, it should
also be modified.

B. Stationary solutions

Assuming that no cavitation occurs, we setNs511¹'
2f

in Eq. ~38! and find

d2a

dr2
1
1

r

da

dr
2lb1b3

d

dr S vc

v Da2 dadr
2b1b2

a

g0
2 S dadr D 2

1b1g0
2S s2

h

g Da50, ~42!

where

b15S 12l
vc

v

~61a2!a2

2g0
3 D 21

,

b2511l
vc

v

629a22a4

2g0
3 ,

andb3 as defined following Eq.~37!. To obtain the station-
ary eigenmode, Eq.~42! should be solved together with the
density equation and magnetic field equation. The magnetic
field equation is given by Eq.~17!, which we rewrite by
substitutingf with Ns as

d

dr S vc

v D52leS b78a
2
dNs

dr
1b88Nsa

da

dr D , ~43!

with
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b65S 11
3

2

eNsa
2

g0
5 D 21

,

b75S 112l
vc

v
g0

23Dg0
22,

b85S 12
a2

2
1l

vc

v

4211a2

2g0
3 Dg0

24,

b785b6b7, b885b6b8, and e5v p
2/v2 is the factor for the

unperturbed plasma density. In the density equation@Eq.
~34!#, the scalar potential is given by Eq.~37!, which can be
simplified by substituting with Eq.~42!

¹'
2f52b18g0~s2h/g!a21

b58

g0
3 S dadr D 2

1
lb38

g0

d

dr S vc

v Da da

dr
, ~44!

with b185b1b4, b385b31b1b3b4a
2, b585b51b1b2b4a

2.
Substituting Eq.~43! into Eq. ~44!, we finally find the equa-
tion for the electron density,

S eb38b78

g0
a3

da

dr D dNs

dr
1F11

eb38b88

g0
a2S dadr D 2GNs

2
b58

g0
3 S dadr D 21b18g0S s2

h

g Da22150. ~45!

We note that, due to the magnetic field generation through
inverse Faraday effect, the electron density is now deter-
mined by an ordinary differential equation. This equation
and Eq.~42! are valid forNs.0. Otherwise, when electron
cavitation occurs, Eq.~42! has to be replaced by Eq.~38!
settingNs50. By electron cavitation, we mean that the elec-
tron density becomes zero in some region as used in@5#. We
emphasize that fore→0 ~and thereforevc/v→0!, all equa-
tions in this and the previous sections reduce to those given
by Sunet al. Equations~42!, ~43!, and ~45! are now to be
completed with the boundary conditions

a~r!ur→`50,
da

dr U
r50

50,

Nsur→`51,
vc

v U
r→`

50.

They are solved numerically by the shooting method@25#.
Similarly to Ref.@5#, we use the asymptotic solution of Eq.
~42! at some large radiusr` as a starting point for numeri-
cally integrating inward. The asymptotic solution is the
modified Bessel function,

a~r!;C`~kr!21/2exp~2kr!

for r→` andk2512s. In our calculations, Eqs.~42! @or Eq.
~38!# and ~43! are integrated using an explicit scheme, and
Eq. ~45! is solved implicitly on the consideration that the
coefficient ofdNs/dr may be a small quantity.

Figure 5 shows a result without electron cavitation with
the eigenvalues50.98. The line fore50.0001 corresponds
to a very small plasma density and a small magnetic field.
For this case, the result given by Sunet al. is recovered@5#.
With increasing plasma density~e50.2 and 0.8, for ex-

FIG. 5. The self-focusing eigenmode fors50.98 at various
plasma densities.~a! Electron density;~b! amplitude profile;~c!
magnetic field~l51! in unitsB05mvc/e.
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ample!, the magnetic field increases, and its effect becomes
apparent: the maximum amplitude of the beam reduces, the
beam tends to be focused at low light intensity, and the mag-
netic field tends to prevent the electrons from being dragged
away from the high intensity region by the ponderomotive

force. The magnetic field distribution in this case is similar to
the result in homogeneous plasma. For left-circularly polar-
ized beams~l521!, the distributions for the electron density
and amplitude of the laser beam do not change, and the mag-
netic field changes its sign. For this case, the magnetic field
plays a positive role for self-focusing of the laser beam as
seen from the dispersion relation Eq.~23!.

As the eigenvalue decreases, the peak amplitude of the
trapped eigenmode increases, and more electrons are dragged
out of the high intensity region. Fore50.0001, when
s5sc50.8784 ~slightly different from the value 0.8778 as
given by Sunet al.!, cavitation begins to occur as shown in
Fig. 6. Due to the magnetic field, the critical eigenvaluesc
for electron cavitation to occur is a function of plasma den-
sity. When the plasma density increases,sc decreases as
plotted in Fig. 7. In this case, the magnetic field distribution
is somewhat similar to the result for density profilef 2(r )
given in Sec. II. Because it changes sign in the radial distri-
bution, its effect on self-focusing is indefinite: nearr50,
h5~12lvc/vg!21.1, it plays a negative role for self-
focusing; but forh,1 in the outer region, it becomes posi-
tive for self-focusing.

With the further decrease of eigenvalue, a cavitation
channel develops. One may note that, due to the magnetic
confinement, the normalized size of the cavitation channel
reduces. The higher the plasma density, the smaller the nor-
malized radius of the cavitation channel. However, the dif-
ference of the amplitude profiles for different plasma densi-
ties is not large. Inside the cavitation channel, the magnetic
field is a constant like that inside a current coil~see Fig. 8!.
Outside the channel, the magnetic field changes sign in the
radial distribution, therefore its effect on self-focusing is also
indefinite, as in the last case.

In the following, we define the normalized trapping power
and radius of the self-trapped eigenmode as

P5E
0

`

ua~r!u2r dr, ~46!

ra5S 1P E
0

`

ua~r!u2r3dr D 1/2. ~47!

FIG. 6. The self-focusing eigenmode fors5sc at various
plasma densities.~a! Electron density;~b! amplitude profile;~c!
magnetic field~l51! in unitsB05mvc/e.

FIG. 7. The eigenvaluesc as a function of plasma density
(vp/v)

2 when the electron cavitation begins to occur.
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For given plasma density, a higher trapping power always
corresponds to a lower eigenvalue. For given value of
s,0.9, the laser power seems to be insensitive to the plasma
density as shown in Fig. 9. This indicates that when the light
intensity is high enough, the cavitation channel plays a fun-
damental role in self-focusing and traps most of the beam

energy, although both the relativistic and magnetic effects
are important for self-focusing outside the channel. For
s.0.9, the laser power becomes sensitive to the plasma den-
sity. Whens→1, i.e., in the relativistic self-focusing limit,
the normalized trapping power scales as~11v p

2/v2!21, in
complete consistency with the analytical calculation as
shown above. The normalized focused radius is shown as a
function of the trapping power in Fig. 10. One may note that,
whenP.5.0, the radius is almost independent of power and
is slightly enhanced when the plasma density increases.
Again, this shows that most of the energy is trapped in the
cavitation channel when the laser beam is at high intensities.

VI. CONCLUSIONS

The magnetic field generated through inverse Faraday ef-
fect by a circularly polarized light wave in plasma is studied
in a self-consistent way, which allows us to calculate the
magnetic field in plasmas for various density profiles and for
light beams at relativistic intensities. Due to the magnetic

FIG. 8. The self-focusing eigenmode fors50.7 at various
plasma densities.~a! Electron density;~b! amplitude profile;~c!
magnetic field~l51! in unitsB05mvc/e.

FIG. 9. Normalized self-trapping powerP as a function of the
eigenvalues at various plasma densities.

FIG. 10. Normalized radiusra of self-focusing eigenmodes as a
function of the trapping powerP at various plasma densities.
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field generation, the relativistically induced transparency of
an intense circularly polarized light wave in overdense
plasma is modified in such a way that it can propagate
through a slightly denser plasma than a linearly polarized
light wave at the same intensity. Meanwhile, an ultra-intense
magnetic field is produced when it propagates in overdense
plasma through induced transparency.

The magnetic field generation results in a reduced critical
power for the self-focusing of a light beam. Generally, at low
light intensities, the magnetic field plays a positive role for
self-focusing of the beam. In this case, it does not change
sign in the radial direction, i.e., either negative for a right-
circularly polarized wave or positive for a left-circularly po-
larized wave. At high light intensities, the effect of the mag-
netic field on self-focusing is indefinite because it changes
sign in the radial direction owing to the electron cavitation.

High constant magnetic field is found inside the cavitation
channel. In both cases, the effect of the electron displace-
ment and cavitation is reduced to some extent due to the
magnetic confinement of the electrons.

Our results are limited by the assumption of long pulse
length. For short pulses, the magnetic field structure should
be modified@18#. But the magnetic field may not have a
direct effect on the wake field generation because the longi-
tudinal oscillation velocity is basically parallel to the mag-
netic field. The large magnetic field may be useful to guide
electron beams in plasma-based particle accelerators.
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